

Norm: UNI EN 1676 e 1706

Numeric designation: EN AB and AC - 43000 Symbolic designation: EN AB and AC - AlSi10Mg

CHEMICAL COMPOSITION %

ALLOY DESIGNATION		ELEMENTS												
		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti	Other each	Other total
EN AB 43000 En 1676:2020	Min	9,0	0	0	0	0,25	0	0	0	0	0	0	0	0
	Max	11,0	0,40	0,03*	0,45	0,45	0,05	0,05	0,10	0,05	0,05	0,15	0,05	0,15
EN AC 43000 EN 1706:2020	Min	9,0	0	0	0	0,20	0	0	0	0	0	0	0	0
	Max	11,0	0,55	0,05*	0,45	0,45	0,05	0,05	0,10	0,05	0,05	0,15	0,05	0,15

^{*}Should corrosion resistance be less important or unnecessary, the maximum Cu content allowed is up to 0.08% in ingots and up to 0.10% in castings.

NOTE: Other each includes the limits of all elements unspecified in the grid.

MECHANICAL PROPERTIES

(Mechanical properties obtained from samples cast separately at +20°C room temperature)

		Rm	Rp02	A	НВ	R Fatigue*	
CASTING PROCESS (condition)	TEMPER	Tensile strength	Yield strength	Elongation	Brinell hardness	Fatigue resistance	
	DESIGNATION	EN 1706:2020	EN 1706:2020	EN 1706:2020	EN 1706:2020	EN 1706:2020	
		MPa	MPa	%	HBW	MPa	
SAND	F	150	80	2	50	80 - 110	
SAND	Т6	220	180	1	75	80 - 110	
PERMANENT MOULD	F	180	90	2,5	55	80 - 110	
PERMANENT MOULD	Т6	260	220	1	90	80 - 110	
PERMANENT MOULD	T64	240	200	2	80	80 - 110	

^{*}Values for tests under rotating bending conditions up to $10^7\,\text{cycles}$ (Wöhler curve)

PHYSICAL PROPERTIES

(The following properties are spoilt by the variation of the chemical composition, by its metallurgic structure, casting integrity and casting conditions, therefore these values are approximate)

SPECIFIC WEIGHT	2,66 Kg/dm³			
SPECIFIC HEAT (at 100 °C)	0,92 J/gK			
ELASTIC MODULUS	74 GPa			

ELECTRICAL CONDUCTIVITY	EN 1706:2020	18 - 25 MS/m
THERMAL CONDUCTIVITY	EN 1706:2020	140 - 170 W/(m K)
LINEAR THERMAL EXPANSION (20 °C - 100 °C)	EN 1706:2020	21·10 ⁻⁶ /K

Norm: UNI EN 1676 e 1706

Numeric designation: EN AB and AC - 43000 Symbolic designation: EN AB and AC - AlSi10Mg

TECHNOLOGICAL FEATURES

(Quality indications excerpted from the norm EN 1706:2020)

CASTABILITY	А	DECORATIVE ANODIZING	E
REASISTANCE TO HOT TEARING	А	ABILITY TO BE WELDED	А
PRESSURE TIGHTNESS	В	ABILITY TO BE POLISHED	D
MACHINABILITY (after cast)	B / C	STRENGHT AT ROOM TEMPERATURE	В
MACHINABILITY (after heat treatement)	В	STRENGHT AT ELEVATED TEMPERATURE (200°C)	С
RESISTANCE TO CORROSION	С	DUCTILITY	С

A: EXCELLENT, B: GOOD, C: FAIR, D: POOR, E: NOT RECOMMENDED, F: UNSUITABLE

GUIDELINES FOR USE

The ingot re-melting process must be carried out as fast as possible and overheating must be avoided (maximum melting temperature 770°C). Iron tools that may be touched by the liquid metal must be specially painted to avoid spoiling the alloy. The best alloy purification results are achieved by treating the alloy with inert gases, such as nitrogen and/or argon, to remove dissolved hydrogen and any oxides in the liquid bath. A careful skimming of the bath is recommended. It is allowed to recycle sprues and casting appendages up to 40% out of the total charge weight.

Heat Treatment - The possible treatments and the properties to be potentially achieved are listed in the table "MECHANICAL PROPERTIES".

FURTHER FEATURES OF THE ALLOY

Resistance to weathering and seawater - Limited resistance to weathering; not suitable for applications directly touched by seawater.

Notes - Castability is excellent and makes it possible to use it a lot. The higher the content of Mg is, the more this alloy tends to hot tearing, even if this tendency is not well-defined. A refining treatment with TiB refiners is recommended to achieve compact components, while a modification treatment with Sodium (Na) or Strontium (Sr) is necessary to increase deformability.

USUAL APPLICATIONS

This alloy is suitable for complex castings, thanks to its good pressure tightness and weldability. It is used in the automotive, engine, railway, aeronautics and armoury industries.

This alloy **complies (for information)** with Standard **EN 601**.

DISCLAIMER

Contents are for information purposes only, they do not assure the mentioned properties. The user is held responsible for decisions based on such information and they are not exonerated from verification. Should this not be carried out, Raffmetal S.p.A. assumes no liability.